Heparin binding proteins and their correlation with *in vitro* sperm characters of Black Bengal buck semen

Vivek C. Gajare, Champak Bhakat, Mohan Mondal, Ajoy Mandal, M.K. Ghosh, A. Chatterjee and M. Karunakaran*

ICAR- National Dairy Research Institute Eastern Regional Station Kalyani, West Bengal

Introduction

- Selection of breeding male with high fertility is essential to get optimal conception rate upon artificial insemination (AI)
- Currently breeding soundness examination (BSE) is carried out to select breeding males
- Bulls which had passed through BSE, had difference of 20-25
 % conception rate (Larson and Miller, 2000)

Difference in fertility is not addressed by regular laboratory tests

Seminal plasma influences the sperm functions and fertility

Seminal proteins

- mediate the binding of sperm cells to oviductal epithelium (Moura et al., 2006)
- preserve sperm membrane integrity (Karunakaran et al., 2016)
- anti-apoptotic (Rangaswami et al., 2006)
- controls oxidative stress
- promotes sperm capacitation (Therein et al., 1998)

Seminal proteins –

- Steopontin
- prostaglandin D synthase
- \succ BSP A₁, A₂, A₃
- HBPs- markers of bull fertility (Sprott et al., 2000; McCauley et al., 2001; Moura *et al.*, 2006; Karunakaran et al., 2016)

Black Bengal goat

- Precious germplasm of WB, Bangladesh, Odisha, Jharkhand and NE states
- ➢ Known for fertility, fecundity, adaptability and meat quality
- AI in goat is gaining importance
 - ➤ 5000 6000 AI/ month in WB
 - To get optimal conception rate upon AI, the buck selected as semen donor should have high fertilizing potential

Objectives

- > To study the *in vitro* sperm characters of Black Bengal buck
- To isolate and characterize seminal plasma and sperm proteins of Black Bengal buck
- To study the correlation between seminal proteins and *in-vitro* sperm characters and freezability of Black Bengal buck semen

Methodology

9 Black Bengal bucks maintained at Eastern Regional Station of ICAR-NDRI, Kalyani

Semen ejaculates were collected by AV method

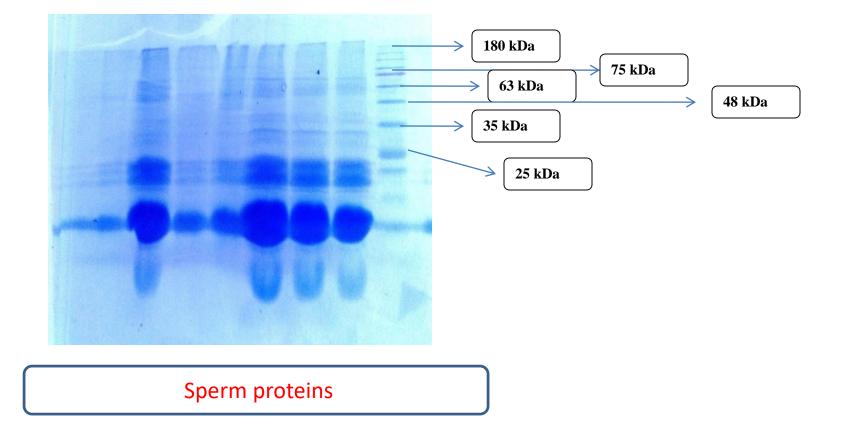
 \blacktriangleright A total of 20 ejaculates (10x2) from each buck were used

Evaluation of neat semen- Volume, Sperm cell concentration, Mass motility, Individual motility, Functional membrane integrity, Morphology In vitro characters studied after dilution with buffer, equilibration, freeze- thaw

- i). Progressive forward motility
- ii). Functional membrane integrity using osmotic resistance test
- iii). Estimation of lipid peroxidation compound malondioldehyde
 - (MDA) using TBA-TCA reagent

2. Isolation and characterization of seminal proteins

- Seminal plasma proteins were extracted by ice cold ethanol method
- Sperm proteins were extracted by Triton X detergent extract method
- Heparin binding proteins from sperm and seminal plasma were isolated using heparin-sepharose affinity chromatography
- SDS-PAGE was performed using total proteins as well as heparin binding proteins


RESULTS- In vitro sperm characters (mean ± SEM)

	Neat semen					After Equilibration			Post Freeze- Thaw			
	Volume (µl)	Mass motility	Individual motility (%)	Functional membrane integrity (%)	Sperm concentration (millions/ml)	Abnormal count (%)	Motility (%)	FMI (%)	MDA (µ mol/ml)	Motility (%)	FMI (%)	MDA (µ mol/ml)
Mean	397.40±8.52	4.2±0.07	69.6±0.96	71.8±0.87	2517.5±17.86	4.8±0.11	56±0.58	60±0.68	0.17±0.04	44.3±0.57	41.1±0.51	0.3±0.01
Buck No.	**	**	**	**	**	**	**	**	**	**	**	**
46	490.20±25.36	4.6±0.21ª	82.4±2.85 ^a	75.3±2.58 ^{bc}	2533.1±53.13 ^{bc}	3.7±0.32 ^b	60±1.98ª	55±1.82ª	0.33±0.024	54.5±1.71 ^a	51.3±1.52ª	0.57±0.03 3 ^a
48	485.20±25.36 ^a	3.4±0.21 ^b	62.4±2.85 ^{bc}	58.0±2.58 ^{de}	2594.1±53.13 ^{ab}	5.0±0.32 ^{ab}	45±1.98 ^b	45±1.82 ^b	0.23±0.024ª	30.0±1.71 ^b	27.7±1.52 ^b	0.32±0.03 3 ^a
51	485.20±25.36 ^a	3.1±0.21 ^{bc}	60.9±2.85 ^{bc}	73.2±2.58 ^a	3020.1±53.13 ^a	4.7±0.32 ^{ab}	42±1.98 ^b	44±1.82 ^b	0.25±0.024ª	26.5±1.71 ^b	27.2±1.52 ^b	0.28±0.03 3 ^a
52	415.20±25.36 ^a	2.9±0.21 ^{bc}	49.9±2.85 ^e	61.4±2.58 ^{bcd}	2339.6±53.13°	4.9±0.32 ^{ab}	40±1.98 ^b	45±1.82 ^b	0.21±0.024 ^b	28.5±1.71 ^b	25.3±1.52 ^b	0.38±0.03 3 ^a
53	425.2±25.36ª	2.7±0.21°	49.9±2.85°	62.6±2.58 ^{bcd}	2417.4±53.13°	4.4±0.32 ^{ab}	42±1.98 ^b	41±1.82 ^b	0.22±0.024 ^b	33.0±1.71 ^a	30.8±1.52 ^{ab}	0.45±0.03 3 ^b
55	455.2±25.36ª	4.8±0.21 ^{ab}	77.9±2.85 ^{ab}	81.7±2.58 ^{ab}	2406.6±53.13°	4.7±0.32 ^{ab}	66±1.98 ª	66±1.82ª	0.21±0.024 ^a	50.5±1.71 ^a	46.4±1.52 ^a	0.63±0.03 3ª
57	290.2±25.36 ^b	2.8±0.21°	63.4±2.85 ^{ab}	60.7±2.58 ^{cd}	2486.6±53.13bc	4.8±0.32 ^{ab}	48±1.98 ^{ab}	44±1.82 ^b	0.07±0.024 ^b	34.5±1.71 ^a	27.1±1.52 ^b	0.13±0.03 3 ^b
59	270.2±25.36 ^b	2.7±0.21°	54.4±2.85 ^{de}	51.5±2.58 ^e	2329.6±53.13°	5.7±0.32 ^a	45±1.98 ^{ab}	41±1.82 ^{ab}	0.08±0.024 ^b	39.0±1.71 ^a ^b	34.3±1.52 ^{ab}	0.13±0.03 3 ^b
67	260.2±25.36 ^b	2.8±0.21°	55.4±2.85 ^{cde}	51.8±2.58°	2530.1±53.13 ^{bc}	5.7±0.32ª	44±1.98 ^{ab}	40±1.82 ^{ab}	0.07±0.024 ^b	35.5±1.71 ^a ^b	29.2±1.52 ^{ab}	0.13±0.03 3 ^b

Data shown all mean \pm SEM (n = 10)

Means in a column with different superscripts a, b, c, d and e differ significantly at P < 0.01

Characterization of seminal proteins

Electrophoretic profile of seminal plasma proteins

10 protein bands with Mol. wt ranging from 17 to 180 kDa were observed in the SDS-PAGE of seminal plasma proteins

Protein Band	Presence (%)
75 kDa, 62- 49 kDa, 20, 17 kDa	100 %
180-136 and 134-101 kDa	55.55%
48 kDa	33.33%
47 – 36, 35 and 34- 25 kDa	44.44%

Electrophoretic profile of sperm proteins

9 bands starting from 17 to 134 kDa

Protein Band	Presence	Buck numbers
75, 20 and 17 kDa	100 %	46, 48, 51, 52, 53, 55, 57, 59, 67
134-101 kDa	44.44%	46, 55, 57, 59
100 kDa	77.77 %	46, 48, 51, 52, 53 57, 67
62-49 kDa	66.66%	46, 48, 51, 52, 53, 67
63 kDa	55.55 %	52, 53, 55, 57, 59
47–36 kDa	55.55%	46, 51, 55, 57, 59
35 kDa	33.33%	46, 51, 57

Heparin binding proteins of seminal plasma

• 8 Protein bands of molecular weight 17 to 180 kDa

Protein Band	Presence	Buck numbers
75 kDa, 62-49, 20 and 17 kDa	100%	46, 48, 51, 52, 53, 55, 57, 59, 67
180-136 kDa	55.55%	46, 48, 51, 52, 55
134-101 kDa	77.77%	48, 51, 52,53, 55,57, 67
47-36 kDa	88.88%	46, 51, 52, 53, 55, 57, 59, 67
35-25 kDa	22.22%	46 and 55

Heparin binding proteins of sperm

• 7 protein bands of 17kDa to 134 kDa

Protein Band	Presence	Buck numbers
17 kDa and 20 kDa	100%	46, 48, 51, 52, 53, 55, 57, 59, 67
134-101 kDa	33.33%	46, 48, 55
100 kDa	55.55%	46, 48, 51, 52, 67
75 kDa	66.66%	46, 52, 53, 55, 57, 59
62-49 kDa	88.88%	46, 48, 51, 52, 53, 55, 59, 67
47-36 kDa	33.33%	46, 52, 67

Correlation between proteins and in vitro sperm characters

180 -136 kDa Heparin binding protein of seminal plasma showed

- ➢ In neat semen high correlation with Mass Motility(0.711), HOST(0.699) and moderate correlation with Volume(0.491) and Individual Motility(0.581).
- In equilibration period high correlation with HOST (0.707) and negative correlation with MDA (-0.825) ,moderate correlation with Individual Motility(0.51)
- > In post thaw parameters moderate correlation with HOST(0.532)

134-101 kDa Heparin binding protein of sperm showed-

- In neat semen high correlation with Mass Motility (0.741) and moderate correlation with individual motility (0.491) and moderate negative correlation with abnormal count (-0.462)
- In the examination of equilibration parameters it showed high correlation with individual motility (0.653) and moderate correlation with HOST(0.485),
- In the post-thaw analysis it shows high correlation with HOST (0.675) moderate correlation with Individual Motility (0.44)

Conclusion

- Seminal proteins influence the in vitro sperm characters and freezability
- Further studies on characterization of proteins and conception rate study needs to be carried out to find whether these proteins can be used as marker for buck selection.

Thank you